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Abstract In this paper, we have applied the wavelet-based coupled method for finding
the numerical solution of Murray equation. To the best of our knowledge, until now
there is no rigorous Legendre wavelets solution has been reported for the Murray
equation. The highest derivative in the differential equation is expanded into Legendre
series, this approximation is integrated while the boundary conditions are applied
using integration constants. With the help of Legendre wavelets operational matrices,
the Murray equation is converted into an algebraic system. Block pulse functions are
used to investigate the Legendre wavelets coefficient vectors of nonlinear terms. The
convergence of the proposed method is proved. Finally, we have given a numerical
example to demonstrate the validity and applicability of the method. Moreover the
use of proposed wavelet-based coupled method is found to be simple, efficient, less
computation costs and computationally attractive.

Keywords Murray equation · Operational matrices · Legendre wavelets ·
Convergence analysis · Laplace transform method

1 Introduction

Wavelet analysis, as a relatively new and emerging area in applied mathematical
Research, has received considerable attention in dealing with PDEs [16–18]. In recent
years, wavelet transforms have found their way into many different fields in science
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and engineering [19]. Moreover, wavelet transform methods establish a connection
with fast numerical algorithms.

Analytical methods enable researchers to study the effect of different variables or
parameters on the function under study easily. Recently, many new approaches to
NLPDEs have been proposed, for example, the Adomian decomposition method [21],
homotopy analysis method [20,22].

In the numerical analysis, wavelet based methods and hybrid methods become
important tools because of the properties of localization. In wavelet based meth-
ods, there are two important ways of improving the approximation of the solu-
tions: Increasing the order of the wavelet family and the increasing the resolution
level of the wavelet. There is a growing interest in using various wavelets to study
problems, of greater computational complexity. Among the wavelet transform fam-
ilies the Haar and Legendre wavelets deserve much attention. The basic idea of
Legendre wavelet method is to convert the PDEs to a system of algebraic equa-
tions by the operational matrices of integral or derivative [10–12]. The main goal
is to show how wavelets and multi-resolution analysis can be applied for improv-
ing the method in terms of easy implementability and achieving the rapidity of its
convergence. Razzaghi and Yousefi [10,12] introduced the Legendre wavelet method
for solving variational problems and constrained optimal control problems. Hariha-
ran et al. [16–18] had introduced the Haar wavelet method for diffusion equation,
convection–diffusion equation, Reaction–diffusion equation, Non linear parabolic
equations, fractional Klein-Gordon equations, Sine-Gordon equations and Fisher’s
equation. Mohammadi and Hosseini [14] had showed a new Legendre wavelet oper-
ational matrix of derivative in solving singular ordinary differential equations. Par-
sian [11] introduced two dimension Legendre wavelets and operational matrices
of integration. Yousefi [13] applied the Legendre wavelets method for solving dif-
ferential equations of Lane–Emden type. Maleknejad and Sohrabi [15] established
the Legendre wavelets method for solving Fredholm integral equations of the first
kind.

In recent years, nonlinear reaction–diffusion equations (NLRDEs) have been widely
studied and applied in biological science and engineering [1–4]. This study concerns
the numerical solutions of nonlinear reaction–diffusion modelling the dynamics of dif-
fusion and nonlinear reproduction for a population [5,6,8,9,22]. The associated non-
linear reaction–diffusion equation was initiated by Fisher [3] to describe the propaga-
tion behaviour of a virile mutant. The nonlinear reaction–diffusion equations describe
a population of diploid individuals [1,3].

In this work, we have applied a wavelet-based coupled method (LLWM) which
combines the Laplace transform method and the Legendre wavelets method for the
numerical solution of Murray equation.

This paper is organized as follows: Basic definitions of wavelets, Legendre wavelets
and their properties are described in Sect. 2. Then, the method of solution of the
Murray equation by the LLWM is presented in Sect. 3. In Sect. 4, the convergence
analysis is described. In Sect. 5, several numerical examples are presented to demon-
strate the effectiveness of the proposed method. Concluding remarks are given in
Sect. 6.
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2 Legendre wavelets and properties

2.1 Wavelets

Wavelets are the family of functions which are derived from the family of scaling
function {∅ j,k:k ∈ Z} where:

∅ (x) =
∑

k

ak∅ (2x − k) (2.1)

For the continuous wavelets, the following equation can be represented:

Ψa,b (x) = |a| −1
2 Ψ

(
x − b

a

)
a, b ∈ R, a �= 0. (2.2)

where a and b are dilation and translation parameters, respectively, such that Ψ (x) is
a single wavelet function.

The discrete values are put for a and b in the initial form of the continuous wavelets,
i.e.:

a = a−j
0 , a0 > 1, b0 > 1, (2.3)

b = kb0a− j
0 , j, k ∈ Z . (2.4)

Then, a family of discrete wavelets can be constructed as follows:

Ψ j,k = |a0| 1
2 Ψ (2 j x − k), (2.5)

So,Ψ j,k(x) constitutes an orthonormal basis in L2 (R), whereΨ (x) is a single function.

2.2 Legendre wavelets

The Legendre wavelets are defined by

Ψnm(t) =
{√

m + 1
2 2

k
2 Lm(2k t − (

n), for

(

n−1
2k ≤ t ≤

(

n+1
2k

0, otherwise
, (2.6)

where m = 0, 1, 2, . . . ,M − 1 and k = 1, 2, . . . , 2 j−1. The coefficient
√

m + 1
2 is

for orthonormality, then, the wavelets Ψnm(t) form an orthonormal basis for L2 [0,1].
In the above formulation of Legendre wavelets, the Legendre polynomials are in the
following way:
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p0 = 1,

p1 = x,

pm+1 (x) = 2m + 1

m + 1
x pm (x)− m

m + 1
pm−1(x). (2.7)

and {pm+1(x)} are the orthogonal functions of order m, which is named the well-known
shifted Legendre polynomials on the interval [0,1]. Note that, in the general form of
Legendre wavelets, the dilation parameter is a = 2−j and the translation parameter is
b = n2j [10].

2.3 Two-dimensional Legendre wavelets

Two-dimensional Legendre wavelets in L2(R) over the interval [0,1] × [0,1] as the
form

Ψn,m,n′,m′(x, y) =

⎧
⎪⎨

⎪⎩

√(
m + 1

2

) (
m′ + 1

2

)
2

k+k′
2 pm(x)pm′(y),

n−1
2k−1 ≤ x ≤ n

2k−1 ,
n′−1
2k−1 ≤ y ≤ n′

2k′−1 ;
0, otherwise.

(2.8)

and m = 0, 1, 2, . . ., M ′ − 1, m′ = 0, 1, 2, 3, . . ., M ′ − 1, n = 1, 2, . . ., 2k−1, n′ = 1, 2,
. . ., 2k′−1

wherePm(x) = Pm′(2k x − 2n + 1), Pm′(y) = Pm′(2k′
y − 2n′ + 1), (2.9)

Pm are Legendre functions of order m defined over the interval [−1,1].

By using two-dimensional shifted Legendre polynomials into x ∈
[

n−1
2k−1 ,

n
2k−1

]
and

y ∈
[

n′−1
2k′−1 ,

n′
2k′−1

]
, the

∫ 1
0 Ψn,m,n′,m′(x, y) can be written as

1∫

0

Ψn,m,n′,m′(x, y) = Am,m′ · Pm′(x)Pm′(y)χ⎡

⎣
n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤

⎦
(x, y) , (2.10)

in which Am,m′ =
√(

m + 1
2

) (
m′ + 1

2

)
2

k+k′
2 and χ⎡

⎣
n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤

⎦
(x, y) is a character-

istic function defined asχ⎡

⎣
n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤

⎦
(x, y)=

{
1, x ∈

[
n−1
2k−1 ,

n
2k−1

]
, y ∈

[
n′−1
2k′−1 ,

n′
2k′−1

]
;

0, otherwise
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Two dimension Legendre Wavelets are an orthonormal set over [0,1] × [0,1].

1∫

0

1∫

0

Ψn,m,n′,m′ (x, y) Ψn1,m1,n′
1,m

′
1
(x, y) dxdy = δn,n1δn′,n′

1
δm′,m′

1
(2.11)

The function u(x,y) ∈ L2(R) defined over [0,1] × [0,1] may be expanded as

u(x, y) = X(x)Y(y) ∼=
∞∑

n=1

∞∑

m=0

∞∑

n′=1

∞∑

m′=0

cn,m,n′,m′Ψn,m,n′,m′(x, y) (2.12)

If the infinite series in Eq. (2.12) is truncated, then Eq. (2.13) can be written as

u (x, y) = X(x)Y(y) ∼=
2k−1∑

n=1

M−1∑

m=0

2k′−1∑

n′=1

M ′−1∑

m′=0

cn,m,n′,m′Ψn,m,n′,m′(x, y) (2.13)

where cn,m,n′,m′ = ∫ 1
0

∫ 1
0 X (x)Y (y)Ψn,m,n′,m′(x, y)dxdy.

The Eq. (2.13) can be expressed as the form

u(x, y) = cT · Ψ (x, y) (2.14)

where C and �(x,y) are coefficients matrix and wavelets vector matrix respec-
tively. The number of dimensions of C and �(x,y) are 2k−12k′−1 MM′ × 1, and
given by

C = [c1,0,1,0, . . . , c1,0,1,M ′−1, c1,0,2,0, . . . , c1,0,2,M ′−1, . . . , c1,0,2k′−1,0, . . . ,

c1,0,2k′−1,M ′−1, . . . , c1,M−1,1,0, . . . , c1,M−1,1,M ′−1, c1,M−1,2,0, . . . ,

c1,M−1,2,M ′−1, . . . , c1,M−1,2K−1,0, . . . , c1,M−1,2K−1,M ′−1, . . . , c2,0,1,0, . . . ,

c2,0,1,M ′−1, c2,0,2,0, . . . , c2,0,2,M ′−1, . . . , c2,0,2K−1,0, . . . , c2,0,2k−1,M ′−1, . . . ,

c2,M−1,1,0, . . . , c2,M−1,1,M ′−1, c2,M−1,2.0, . . . , c2,M−1,2,M ′−1, . . . ,

c2,M−1,2k−1,0, . . . , c2,M−1,2k−1,M ′−1, . . . , c2k−1,0,1,0, . . . , c2k−1,0,1M ′−1,

c2k−1,0,2,0,. . ., c2k−1,0,M ′−1,. . ., c2k−1,0,2k−1,0,. . ., c2k−1,M−1,2k′−1,M ′−1]T (2.15)

� = [�1,0,1,0, . . . , �1,0,1,M′−1, �1,0,2,0, . . . , �1,0,2k−1,0
, . . . , �

1,0,2k′−1,M′−1
, . . . ,

�1,M−1,1,0, . . . , �1,M−1,1,M′−1, �1,M−1,2,0, . . . , �1,M−1,2,M′−1, . . . ,

�
1,M−1,2k−1,0

, . . . , �
1,M−1,2k−1,M′−1

, . . . , �2,0,1,0, . . . , �2,0,1,M′−1,

�2,0,2,0, . . . , �2,0,2,M′−1, . . . , �2,0,2k′−1,0
, . . . , �

2,0,2k−1,M′−1
, . . . ,

�2,M−1,1,0, . . . , �2,M−1,1,M′−1, �2,M−1,2,0, . . . , �2,M−1,2,M′−1, . . . ,

�
2,M−1,2k′−1,0

, . . . , �
2,M−1,2k′−1,M′−1

, �
2k−1,0,1,0

, . . . , �
2k−1,0,1,M′−1

,

�
2k−1,0,2,0

, . . . , �
2k−1,0,2,M′−1

, . . . , �
2k−1,0,2k−1,0

, . . . ,

�
2k−1,M−1,2k−1,M′−1

]T (2.16)
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The integration of the product of two Legendre wavelet function vectors is obtained
as

1∫

0

1∫

0

Ψ (x, y) Ψ T (x, y) dxdy = I (2.17)

where I is the identity matrix.
Another form of the two dimensional Legendre wavelets by using the one dimen-

sional Legendre wavelets was given in [10].
A two-dimensional function f(x,y) defined [0,1) × [0,1) may be expanded by Legen-

dre wavelet series as

f (x, y) =
2k M∑

i=1

2k M∑

j=1

Ci j�i(x)�j(y) = �T (x)C�(y) (2.18)

where

Ci j =
1∫

0

f (x, y)�i (x) dx

1∫

0

f(x, y)�j (y) dt (2.19)

Equation (2.18) can be written into the discrete form (in matrix form) by

f (x, y) = �T (x)C�(y) (2.20)

Where C and �(t) are 2k−1 Mx1 matrices given by

C =

⎡

⎢⎢⎢⎣

c0,0 c0,1 . . . c0,2k−1 M
c1,0 c1,1 . . . c1,2k−1 M
...

...
. . .

...

c2k−1 M,0 c2k−1M,1 . . . c2k−1 M2k−1 M

⎤

⎥⎥⎥⎦

The two dimensional Legendre wavelet operational matrix of integration has been
derived in Refs. [12,10].

Theorem 1 Let �(x, y) be the two-dimensional Legendre wavelets vector defined in
Eq. (2.8), we have

∂Ψ (x, y)

∂x
= Dx�(x, y) (2.21)

123



2392 J Math Chem (2013) 51:2386–2400

where Dx is 2k−1,2k′−1 MM′ × 2k−12k′−1 MM′ and has the form as follows:

D x =

⎡

⎢⎢⎢⎣

D O ′ . . . 0′
0′ D . . . 0′
...

...
. . .

...

O ′ O ′ . . . D

⎤

⎥⎥⎥⎦

In which 0′ and D is 2k−12k′−1 MM′ × 2k−12k′−1 MM′ matrix and the element of
D is defined as follows:

Dr,s =
{

2k√(2r − 1)(2s − 1)I, r = 2, 3, . . . ,M; s =1, . . . , r − 1; r + s is odd
0, otherwise

(2.22)

and I, O are 2k′−1M′ × 2k′−1M′ identity matrices.

Theorem 2 Let Ψ (x, y) be the two-dimensional Legendre wavelets vector defined in
Eq. (2.23), we have

∂Ψ (x, y)

∂x
= Dy� (x, y) , (2.23)

Dy =

⎡

⎢⎢⎢⎣

D O ′ . . . 0′
0′ D . . . 0′
...

...
. . .

...

O ′ O ′ . . . D

⎤

⎥⎥⎥⎦ ,

where Dy is 2k−1,2k′−1 MM′ × 2k−12k′−1 MM′ and O′, D is MM′ × MM′ matrix
is given as

D =

⎡

⎢⎢⎢⎣

F O . . . 0
0 F . . . 0
...

...
. . .

...

O O . . . F

⎤

⎥⎥⎥⎦ ,

in which O and F is M′ × MM′ matrix, and F is defined as follows:

Fr,s =
{

2k′√
(2r − 1)(2s − 1), r =2, . . . ,M ′; S = 1, . . . , r − 1; and r + s is odd

0, otherwise

(2.24)
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By using Eqs. (2.21) and (2.23), the operational matrices for nth derivative can be
derived as

∂nΨ (x, y)

∂xn
= Dn

xΨ (x, y) ,
∂mΨ (x, y)

∂ym
= Dm

y Ψ (x, y)

∂n+mΨ (x, y)

∂xn∂ym
= Dn

x Dm
y Ψ (x, y)

where Dn is the nth power of matrix D.

2.4 Block pulse functions (BPFs)

The block pulse functions form a complete set of orthogonal functions which defined
on the interval [0, b) by

bi (t) =
{

1, i−1
m b ≤ t < i

m b,
0, elsewhere

(2.25)

for i = 1, 2, . . ., m. It is also known that for any absolutely integrable function f(t) on
[0,b) can be expanded in block pulse functions:

f (t) ∼= ξ T Bm(t) (2.26)

ξ T = [ f1, f2, . . . , fm] , Bm (t) = [b1 (t) , b2 (t) , . . . , bm (t)] (2.27)

where fi are the coefficients of the block-pulse function, given by

fi = m

b

b∫

0

f (t)bi (t) dt (2.28)

Remark 1 Let A and B are two matrices of m x m, then A ⊗ B = (ai j × bi j )mm .

Lemma 1 Assuming f(t) and g(t) are two absolutely integrable functions, which can
be expanded in block pulse function as f(t) = FB(t) and g(t) = GB(t) respectively, then
we have

f (t) g (t) = F B (t) BT (t)GT = H B (t) (2.29)

where H = F ⊗G.

2.5 Approximating the nonlinear term

The Legendre wavelets can be expanded into m-set of block-pulse Functions as

Ψ (t) = ∅m×m Bm(t) (2.30)
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Taking the collocation points as following

ti = i − 1/2

2k−1 M
, i = 1, 2, . . . , 2k−1 M (2.31)

The m-square Legendre matrix ∅m×m is defined as

∅m×m ∼= [Ψ (t1) Ψ (t2) . . . Ψ (t2k−1 M )] (2.32)

The operational matrix of product of Legendre wavelets can be obtained by using
the properties of BPFs, let f (x, t) and g(x, t) are two absolutely integrable func-
tions, which can be expanded by Legendre wavelets as f (x, t) = Ψ T (x)FΨ (t) and
g(x, t) = Ψ T (x)GΨ (t) respectively.

From Eq. (2.30), we have

f (x, t) = Ψ T (x) FΨ (t) = BT (x) ∅T
mm F∅mm B (t) , (2.33)

g (x, t) = Ψ T (x)GΨ (t) = BT (x) ∅T
mm G∅mm B (t) , (2.34)

and Fb = ∅T
mm F∅mm,Gb = ∅T

mm G∅mm, Hb = Fb ⊗ Gb.

Then,

f (x, t) g (x, t) = BT Hb B (t) ,

= BT (x)∅T
mminv

(
∅T

mm

)
Hbinv

(
inv

(
∅T

mm

)
Hbinv (∅mm)

)
∅mm B (t)

= Ψ T (x) HΨ (t) (2.35)

where H = inv(∅T
mm)Hbinv((∅mm))

2.6 Function approximation

A given function f(x) with the domain [0,1] can be approximated by:

f(x) =
∞∑

k=1

∞∑

m=0

ck,mΨk,m (x) = CT .Ψ (x) . (2.36)

Here C and Ψ are the matrices of size (2j−1M × 1).

C=[c1,0, c1,1, . . ., c1,M−1, c2,0, c2,1, . . ., c2,M−1, . . ., cj−1
2 , 1, . . ., cj−1

2 ,M−1]T (2.37)

Ψ (x)=[Ψ1,0, Ψ1,1, Ψ2,0, Ψ2,1, . . . , Ψ2,M−1, . . . , Ψ2 j−1 ,M−1]T. (2.38)
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3 Mathematical model and the method of solution

Consider the NLRDEs with convection term of the form [7]

∂U

∂t
= A (U )

∂2U

∂x2 + B (U )
∂U

∂x
+ C (U ) , 0 ≤ x < 1, 0 ≤ t < 1. (3.1)

where U (x, t) is an unknown function, A(U ), B (U ) and C(U ) are arbitrary smooth
functions. Equation (3.1) is a well-known nonlinear second order evolution equation
describing various models in biology [7].

When A (U ) = 1, B (U ) = μ1U and C (U ) = μ2U − μ3U 2

Here μ1, μ2,μ3 ∈ R.
Equation (3.1) becomes

∂U

∂t
= ∂2U

∂x2 + μ1U
∂U

∂x
+ μ2U − μ3U 2, 0 ≤ x < 1, 0 ≤ t < 1, (3.2)

which is called the nonlinear Murray equation with initial condition:

U (x, 0) = f (x) , 0 ≤ x < 1 (3.3)

and mixed boundary conditions

U (0, t) = G(t), 0 ≤ t < 1
∂U
∂x = I (t), 0 ≤ t < 1

}
(3.4)

The exact solution for Eq. (3.2) is given by

U (x, t) = μ2 + c1e
(
γ 2t+γ x

)

μ3 + c0e−(μ2t)
,

where γ = μ3
μ1

and μ1 �= 0

c0 is a constant such that μ3 + c0e(−λ2t) �= 0 and c1 is an arbitrary constant.
Taking Laplace transform on both sides of Eq. (3.2), we get

sL(U )− U (x, 0) = L[Uxx + μ1UUx + μ2U − μ3U 2] (3.5)

sL(U ) = U (x, 0)+ L[Uxx + μ1UUx + μ2U − μ3U 2] (3.6)

L(U ) = U (x, 0)

s
+ 1

s
L[Uxx + μ1UUx + μ2U − μ3U 2] (3.7)

Taking inverse Laplace transform to Eq. (3.7) we get

U (x, t) = U (x, 0)+ L−1
(

1

s
L[Uxx + μ1UUx + μ2U − μ3U 2]

)
(3.8)
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Because

L−1
[

1

s
L(tn)

]
= L−1

(
n!

sn+2

)

= 1

n + 1
tn+1; (n = 0, 1, 2, . . .) (3.9)

We have

L−1[s−1L()] =
t∫

0

(.)dt (3.10)

From Eq. (3.8)

U (x, t) = U (x, 0)+ L−1
(

1

s
L (Uxx + g (U ))

)
(3.11)

where g (U ) = μ1UUx + μ2U − μ3U 2

By using the Legendre wavelets method,

U (x, t) = CTψ(x, t)
U (x, 0) = STψ(x, t)
g(U ) = GTψ(x, t)

⎫
⎬

⎭ (3.12)

Substituting Eq. (3.12) in Eq. (3.11), we obtain

CT = ST + (CT Dx2 + GT )P2
t (3.13)

Here GT has a nonlinear relation with C. When we solve a nonlinear algebraic system,
we get the solution is more complex and large computation time. In order to overcome
the above drawbacks, we introduce an approximation formula as follows:

Un+1 = U (x, 0)+�

[
∂2Un

∂x2 + g(Un)

]
(3.14)

where g (U ) = μ1UUx + μ2U − μ3U 2

Expanding u(x,t) by Legendre wavelets using the following relation

CT
n+1 = CT

0 +
[
CT

n D2
x + GT

n

]
P2

t (3.15)
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4 Convergence analysis

U∗ = U0 +�
[
U∗

xx + g(U∗)
]

(4.1)

Un+1 = U0 +� [(Un)xx + g(Un)] (4.2)

Subtracting Eq. (4.1) from Eq. (4.2), we obtain

Un+1 − U∗ = �[(Un − U∗)xx + g(Un)− g(U∗)] (4.3)

Using Lipschitz condition,
‖g(Un)− g(U∗)‖ ≤ γ ‖Un − U∗‖ , we have

∥∥Un+1 − U∗∥∥ ≤ ∥∥�(Un − U∗)xx
∥∥ + ∥∥�(g(Un)− g(U∗))

∥∥ (4.4)

≤ ∥∥�
(
Un − U∗)

xx

∥∥ + γ
∥∥�

(
Un − U∗)∥∥ (4.5)

Let Un+1 = CT
n+1ψ(x, t)

U∗ = CTψ(x, t)

∈T
n+1= CT

n+! − CT

Equation (4.5) gives

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥ (4.6)

The following formula Eq. (4.7) can be obtained by using recursive relation.

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥
n ∈0 (4.7)

When Limn→∞
∥∥D2

x P2
t + γ P2

t

∥∥n
=0, the series solution of Eq. (3.2) using the LLWM

converges to u∗ (x). By using the definitions of Dx and Pt , we can get the value of γ .
Suppose k = k′ = 1 and M = M ′, the maximum element of Dx and Pt is
2
√
(2M − 1) (2M − 3) and 0.5 respectively.

5 Illustrative example

Example 5.1 Consider the Murray equation

∂U

∂t
= ∂2U

∂x2 + U
∂U

∂x
+ U − U 2, 0 ≤ x < 1, 0 ≤ t < 1 (5.1)
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With the initial condition

U (x, 0) = μ2 + c1e(γ x)

μ3 + c0
(5.2)

and mixed boundary conditions

U (0, t) = μ2 + c1e
(
γ 2t

)

μ3 + c0e(−μ2t)
(5.3)

∂U (0, t)

∂x
= c1γ e

(
γ 2t

)

μ3 + c0e(−μ2t)
(5.4)

with c0 = 1, c1 = 1 and γ = 1.

We start the first iteration; an initial guess of the solution of u0 is required. We
select u0 = u (x, 0), and expanding u by the Legendre wavelets, we gain

The Legendre wavelets scheme for Eq. (5.1) is given by

CT
n+1 = CT

0 +
[
CT

n D2
x + GT

n

]
P2

t

Our proposed method (LLWM) can be compared with Cherniha’s results [7]. Good
agreement with the exact solution is observed.

More efficient and accurate results can be obtained by using larger values of M .
Comparison with these algorithms shows that the LLWM is competitive and efficient.

The numerical solutions of Murray’s equation (Example.5.1) for different values
of x and t is presented in Table 1. Our LLWM results are in excellent agreement with
the exact solution and those obtained by the Cherniha’s method [7].

All the numerical experiments presented in this section were computed in double
precision with some MATLAB codes on a personal computer System Vostro 1400
Processor x86 Family 6 Model 15 Stepping 13 Genuine Intel ∼1596 Mhz.

Table 1 A comparison between
the exact and the LLWM for
various values of (x, t) and
M = 4

x t Exact solution Numerical solution
U(x,t) uL LW M

0.125 0.125 1.21329571 1.21329569

0.125 0.875 2.62430764 2.62430765

0.375 0.125 1.40702557 1.40702556

0.375 0.875 3.16921683 3.16921680

0.625 0.125 1.65577963 1.65577962

0.625 0.875 3.86889407 3.86889405

0.875 0.125 1.97518616 1.97518615

0.875 0.875 4.76729744 4.76729740
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6 Conclusion

In this work, a new coupled wavelet-based method has been successfully employed to
obtain the numerical solutions of Murray’s equation arising in mathematical biology.
The proposed scheme is the capability to overcome the difficulty arising in calculating
the integral values while dealing with nonlinear problems. This method shows higher
efficiency than the traditional Legendre wavelet method for solving nonlinear PDEs.
Numerical example illustrates the powerful of the proposed scheme LLWM. Also this
paper illustrates the validity and excellent potential of the LLWM for nonlinear PDEs.
The numerical solutions obtained using the proposed method show that the solutions
are in very good coincidence with the exact solution. In addition the calculations
involved in LLWM are simple, straight forward and low computation cost. In Sect. 4,
we have developed the convergence of the proposed algorithm.
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